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Simple Summary: Fascin is an actin-bundling protein, and is highly expressed in metastatic tumor
cells. Small molecule fascin inhibitors have been recently developed to block tumor cell migration,
invasion, and metastasis. Here we have tested a new fascin inhibitor on bladder cancer cells, and
showed the inhibitory effects of the fascin inhibitor on bladder cancer cell migration, adhesion,
and primary tumor growth. Therefore, fascin inhibitors might provide clinical benefits to bladder
cancer patients.

Abstract: Bladder cancer is one of the most common cancers in the world. Early stage bladder tumors
can be surgically removed, but these patients usually have relapses. When bladder cancer becomes
metastatic, survival is very low. There is an urgent need for new treatments for metastatic bladder
cancers. Here, we report that a new fascin inhibitor decreases the migration and adhesion of bladder
cancer cells. Furthermore, this inhibitor decreases the primary tumor growth and increases the overall
survival of mice bearing bladder cancers, alone, as well as in combination with the chemotherapy
medication, cisplatin, or the immune checkpoint inhibitor, anti-PD-1 antibody. These data suggest
that fascin inhibitors can be explored as a new treatment for bladder cancers.
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1. Introduction

Bladder cancer is the malignant growth of cells that make up the urinary bladder [1].
Urothelial carcinoma (also named as transitional cell carcinoma) is the most common type
of bladder cancer. The urothelial cells line the inside of the bladder. About half of a million
adults in the world were diagnosed with bladder cancer in 2018, and ~200,000 died from
this disease [2]. Smoking accounts for almost half of all of these cases. Among men, bladder
cancer is the fourth most common cancer in the USA. The 5-year survival rate of patients
with bladder cancer that has not spread beyond the inner layer of the bladder wall is
96% [3]. However, if the bladder cancer has spread to distant parts of the body, the 5-year
survival rate is 5% [3]. Therefore, prevention and delay of tumor metastasis will greatly
increase the survival of bladder cancer patients. Bladder cancer treatment is determined by
stage, and can be treated by surgery, chemotherapy (including cisplatin and fluorouracil
(5-FU)), radiation therapy, immunotherapy (including anti-PD-1 antibody therapeutics),
and targeted therapy (including FGFR inhibitor) [4,5]. Early stage bladder tumors can
often be surgically removed. For metastatic bladder cancer, platinum-based chemotherapy
(such as cisplatin) is usually the initial treatment. These treatment options have greatly
advanced the cares of bladder cancer patients. However, the survival rate for metastatic
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bladder cancer patients is still very low. Effective treatments are few. New treatments for
metastatic bladder cancers are urgently needed.

Tumor cell migration is essential for metastasis [6]. Migration enables tumor cells
to leave the primary tumor bed, enter blood vessels, and then exit the circulation and
infiltrate distant tissues/organs. Cell migration requires actin cytoskeleton reorganiza-
tion by forming polymers and bundles which result in significant reshaping of the cell
membrane [7]. Of the most dynamic changes in plasma membrane are the protrusions by
filopodia, finger-like structures which are fundamental to the shape and motility of cells [8].
Metastatic tumor cells contain an abundance of filopodia, and their invasiveness correlates
with the numbers of filopodia [8–10]. Filopodia are formed by actin bundles, and fascin
is essential for cross-linking actin filaments into actin bundles in tumor cells. There is no
amino acid sequence homology between fascin and other actin-binding proteins [11–16].
Studies in cancer patients showed that fascin is a biomarker of metastases and can be a good
therapeutic target [17–23]. Many types of metastatic tumors have elevated fascin levels
which are correlated with worsening clinical outcomes, such as aggressive phenotypes,
poor prognosis, and shorter survival [24,25]. While fascin level is low or absent in normal
adult epithelial cells, it is highly expressed in metastatic tumors [26,27]. Genetic studies
in mice demonstrate normal development in fascin gene-knockout mice, which is likely
due to the functional compensation of other actin-bundling proteins during embryonic
development [28]. Fascin gene deletion could delay tumor development, including slow-
ing of tumor growth and reducing metastatic colonization, as well as increasing overall
survival [29]. In contrast, over-expression of fascin could increase tumor progression and
decrease the overall survival in mouse models [30]. All together, these mouse genetic
studies provide strong evidence for the essential roles that fascin plays in tumor initiation
(tumor burden), tumor progression, tumor metastasis, and overall survival.

Through screening of chemical libraries, we had previously identified small molecule
chemical compounds that could specifically inhibit the actin-bundling activity of fascin [31].
After optimization of one of the initial hits through medicinal chemistry, one fascin inhibitor
showed improved activity in blocking actin-binding and actin-bundling activities of fascin,
as well as inhibiting the migration, invasion, and metastasis of tumor cells [32]. To further
understand the molecular mechanism of the fascin inhibitors, we solved the X-ray crystal
structure of the complex containing both fascin and a fascin inhibitor, and the data showed
that the fascin inhibitor can directly occupy one of the actin-binding sites in fascin, and
induce a conformational change in the tertiary structure of fascin leading to the loss of
the actin-bundling function of fascin [33]. Here, we extend our previous studies of fascin
inhibitors in triple-negative breast cancers, and explore the applications of fascin inhibitors
in bladder cancers. Similar to triple-negative breast cancers, fascin inhibitors block the
migration of bladder cancer cells. Different from breast cancers, fascin inhibitors also
decrease the primary tumor growth of bladder cancers in mouse models. Furthermore, we
have shown here that fascin inhibitors act additively with cisplatin to increase the overall
survival of mice bearing bladder cancers. Moreover, fascin inhibitors markedly increase
the response rate to the anti-PD-1 antibody in syngeneic mouse models of bladder cancers.
These data demonstrate that fascin inhibitors can be explored as a novel treatment for
bladder cancers.

2. Results
2.1. Fascin Inhibitor Decreases the Migration of Bladder Cancer Cells

Given the roles of fascin in actin cytoskeletal reorganization, filapodial formation,
and tumor cell migration, we started with the investigation of the possible effect of fascin
inhibitors on the migration of bladder carcinoma cells. To test the effect of fascin inhibitors
on bladder carcinoma cell migration, we studied the migration of these cells in the absence
or presence of fascin inhibitors. We used the quantitative Boyden chamber assay. Human
bladder cancer cell lines were selected to represent poorly differentiated tumors (T24,
253J, and TCCSUP), and squamous differentiated tumors (J82). These cell lines have
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different molecular profiles [34]. T24, 253J, TCCSUP, and J82 human urinary bladder
carcinoma cells, as well as MB49 mouse bladder carcinoma cells were loaded onto the
top of the Boyden chamber. Cells migrated into the bottom of the chamber filter were
counted. Different concentrations of the fascin inhibitor NP-G2-044 were used [32,33].
NP-G2-044 blocked the migration of all of these bladder cancer cells with IC50 values from
9 to 13 µM (Figure 1A–E). The actual IC50 values for free NP-G2-044 are 0.27–0.39 µM
(in the presence of 10% of serum), given that NP-G2-044 has an ~99.7% mouse plasma
protein binding [35,36]. Hence, fascin inhibitors can inhibit the migration of bladder
carcinoma cells.
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Figure 1. NP-G2-044 decreases the migration of bladder cancer cells. Boyden chamber migration assay was used to quantify
the inhibitory effect of NP-G2-044 on the migration of various bladder cancer cells. Different concentrations of NP-G2-044
were used. Migration index was calculated using the number of migrated cells in the presence of NP-G2-044 divided by the
number of migrated cells in the absence of NP-G2-044. (A) T24 human bladder cancer cells. (B) 253J human bladder cancer
cells. (C) MB49 mouse bladder cancer cells. (D) TCCSUP human bladder cancer cells. (E) J82 human bladder cancer cells.
The data were analyzed and fitted using GraphPad. Data are presented as mean ± SEM. n = 3.

2.2. Effects of Fascin Inhibitors on the Growth of Bladder Cancer Cells

In our previous studies with breast cancer cells (except for the EGFR-high triple-
negative breast cancer cells), fascin inhibitors did not inhibit the growth of these tumor
cells [31,32]. To investigate whether the fascin inhibitor NP-G2-044 has any effect on the
growth of urinary bladder carcinoma cells, we used various experimental approaches
to examine the cell growth in culture plates under 2D experimental conditions and in
soft agar under 3D experimental conditions. When bladder cancer cells T24, 253J, MB49,
TCCSUP, and J82 cultured in the absence and presence of a high concentration of NP-G2-
044 (~10-fold higher than the IC50 values), no inhibitory effect on the cell growth was
observed for all of these 5 bladder cancer cell lines (Figure 2A–E). As positive controls,
cisplatin (50 µg/mL) and 5-FU (100 µM) inhibited the growth of these bladder cancer cells,
as previously reported [37,38] (Figure 2A–E). Furthermore, the addition of NP-G2-044 did
not interfere with the inhibitory effects of cisplatin and 5-FU (Figure 2A–E). These data
show that NP-G2-044 did not inhibit the growth of these bladder cancer cells under 2D
culture conditions.
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Figure 2. Effects of NP-G2-044 on the growth of bladder cancer cells. (A–E) Effect of NP-G2-044 on the growth of various
bladder cancer cells in culture plates under 2D conditions. Cisplatin and 5-FU were used as positive control. Untreated
and treated bladder tumor cells grew in the presence of 10% serum, and the number of cells was counted. (F–T) Soft
agar colony assays to examine the effect of NP-G2-044 on the growth of various bladder cancer cells under 3D conditions.
(F,I,L,O,R) The number of colonies of various bladder cancer cells in the absence of any drugs (control), and in the presence
of NP-G2-044, cisplatin, or NP-G2-044 + cisplatin. (G,J,M,P,S) The average volume of individual colonies of various bladder
cancer cells in the absence or presence of NP-G2-044. (H,K,N,Q,T) Representative images of colonies of various bladder
cancer cells in the absence or presence of NP-G2-044. The data are presented as mean ± SEM. n = 3. **, p < 0.001. The scale
bar, 50 µm.
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To study the potential effect of NP-G2-044 on the growth of bladder cancer cells under
a 3D experimental condition, we monitored the growth of the bladder cancer cells using
the soft agar colony formation assay. These carcinoma cells were mixed with soft agar,
and the number of colonies was counted after 14 days. As shown in Figure 2F,I,L,O,R,
NP-G2-044 treatment did not decrease the number of colonies growing in soft agar from
these bladder cancer cells. As a positive control, cisplatin decreased the number of colonies
formed by these bladder cancer cells (Figure 2F,I,L,O,R). However, we noticed that NP-G2-
044 decreased the volumes of individual colonies from all of these 5 bladder cancer cells
(Figure 2G,H,J,K,M,N,P–T). The volume decrease ranged from 65% to 84% among these
5 bladder cancer cell lines (Figure 2G,J,M,P,S). A possible explanation is that, as we observed
before, fascin inhibitor-treated cells were without filopodia and were rounded, compared
to untreated cells with filopodia which were extended [31,39]. This might underlie the
volume differences. Furthermore, we showed that NP-G2-044 did not induce apoptosis in
these bladder cancer cells. Taken together, the above data show that although NP-G2-044
has no effect on the growth and apoptosis of bladder cancers cells, it reduces the volumes
of individual colonies formed in soft agar.

2.3. Fascin Inhibitor Reduces Cell Adhesion

Since fascin is involved in focal adhesion formation [32,40], we investigated whether
NP-G2-044 affects the adhesion of bladder cancer cells. T24, 253J, MB49, TCCSUP, and J82
bladder cancer cells grew in laminin-coated plates, with or without different concentrations
of NP-G2-044. After one hour, nonadherent cells and adherent cells were quantified.
NP-G2-044 inhibited the adhesion of all five bladder cancer cell lines with IC50 values
of 7.8–9.4 µM (Figure 3). Given the 99.7% plasma protein binding of NP-G2-044 (in the
presence of 100% serum) [35,36], the corresponding IC50 values for free NP-G2-044 are
0.23–0.28 µM (in the presence of 10% of serum). These data demonstrate that NP-G2-044
inhibits the cell adhesion of bladder cancer cells.
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Figure 3. NP-G2-044 decreases the adhesion of bladder cancer cells. The effect of NP-G2-044 on cell adhesion of various
bladder cancer cells was quantified. Different concentrations of NP-G2-044 were used to treat the cells. Cell adhesion was
calculated using the number of adherent cells in the presence of NP-G2-044 divided by the number of adherent cells in the
absence of NP-G2-044. (A) T24 human bladder cancer cells. (B) 253J human bladder cancer cells. (C) MB49 mouse bladder
cancer cells. (D) TCCSUP human bladder cancer cells. (E) J82 human bladder cancer cells. Data were analyzed and fitted
using GraphPad. Data are presented as mean ± SEM. n = 3.
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2.4. Increases in the Overall Survival of Mice Bearing Bladder Cancer by Treatments with
NP-G2-044 Alone and in Combination with Cisplatin

Currently, there are no therapeutics that specifically target metastasis for clinical use.
Although NP-G2-044 did not induce apoptosis of bladder cancer cells, it is possible that its
anti-migration effect, when combined with cytotoxic agents, such as cisplatin, will lead
to a more robust clinical benefit. To demonstrate NP-G2-044’s effect on overall survival
when combined with cisplatin, we examined the overall survival of tumor-bearing mice.
C57BL/6 mice with an intact immune system were implanted with MB49 mouse bladder
carcinoma cells, a syngeneic mouse model of bladder cancer widely used for 40 years [41].
The mice were divided into four treatment groups: control solvents, NP-G2-04 alone,
cisplatin alone, and NP-G2-044 combined with cisplatin (Figure 4). Primary tumor growth
was decreased ~72% (p < 0.001) by NP-G2-044 treatment when compared with the control
group (using the primary tumor volumes on Day 23 for comparisons) (Figure 4A). Similarly,
cisplatin decreased the tumor growth by ~78% (p < 0.001) (Figure 4A). A combination of
NP-G2-044 and cisplatin decreased the tumor growth by ~84% (p < 0.001) (Figure 4A).
Furthermore, the median overall survival increased ~52% by NP-G2-044 treatment when
compared with the control group (log-rank test, p < 0.001) (Figure 4B). The median overall
survival increased ~29% by cisplatin (log-rank test, p = 0.004) (Figure 4B). The combination
of NP-G2-044 and cisplatin increased the median overall survival by ~117% (log-rank test,
p < 0.001) (Figure 4B). These studies indicate that NP-G2-044 alone and in combination
with cisplatin can extend the lives of mice bearing bladder carcinoma.
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2.5. Increases in the Overall Survival of Mice Bearing Bladder Cancer by Treatment with
NP-G2-044 in Combination with Anti-PD-1 Antibody

We further investigated the effect on overall survival by fascin inhibitors in combi-
nation therapy with immune checkpoint inhibitors, such as the anti-PD-1 antibody using
the above syngeneic mouse model. The tumor-bearing mice were randomized into four
treatment groups: control IgG, NP-G2-044 alone, anti-PD-1 antibody alone (administered
on days 11, 13, 15 and 17) [42], NP-G2-044 + anti-PD-1 antibody (Figure 5A,B). Primary
tumor growth was decreased by NP-G2-044 treatment ~72% (p < 0.001) when compared
with the control group (using the primary tumor volumes on Day 23 for comparisons)
(Figure 5A). Similarly, anti-PD-1 antibody decreased the tumor growth by ~79% (p < 0.001)
(Figure 5A). A combination of NP-G2-044 and anti-PD-1 antibody decreased the tumor
growth by ~85% (p < 0.001) (Figure 5A). Furthermore, the overall survival of these mice
was monitored (Figure 5B). The median overall survival increased ~47% by NP-G2-044
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treatment (log-rank test, p < 0.001) (Figure 5B) when compared with the control group. The
median overall survival increased ~63% by anti-PD-1 antibody (log-rank test, p = 0.001)
(Figure 5B). The combination of NP-G2-044 and anti-PD-1 antibody increased the median
overall survival by ~119% (log-rank test, p < 0.001) (Figure 5B). All together, these data
demonstrate that NP-G2-044 can act with anti-PD-1 therapy to increase the overall survival
of mice bearing bladder cancer.
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Figure 5. Overall survival increases of mice bearing bladder tumor by NP-G2-044 and anti-PD-1 antibody. C57BL/6 mice
implanted with MB49 mouse bladder cancer cells were treated with control solvent, NP-G2-044, anti-PD-1 antibody, or a
combination of NP-G2-044 + anti-PD-1 antibody. (A) Primary tumor volumes were measured every 3 days. Data are shown
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3. Discussion

We have shown here that a new fascin inhibitor inhibits the migration of bladder
carcinoma cells. This is consistent with the biochemical functions of fascin in filopodial for-
mation and actin cytoskeletal reorganization, which are necessary for tumor cell migration.
This fascin inhibitor also decreases bladder tumor cell adhesion. Focal adhesions are dy-
namic complexes that allow the cell to communicate with and respond to its environment.
Using fluorescence recovery after photobleaching and time-lapse confocal live-cell imaging,
we showed that NP-G2-044 treatment decreased the assembly and disassembly rates of
focal adhesions in breast cancer cells [32]. Upon NP-G2-044 treatment, the focal adhesions
were more stable. Furthermore, fascin was observed to accumulate in focal adhesions
by total internal reflection fluorescence microscopy [40]. Fascin also inhibited myosine II
activity and prevented the association of myosine II with F-actin filaments, implying that
fasci inhibitor treatment might increase the cell contractility. Cells with knock-downed
fascin generated higher tensile forces and migrated slower. Moreover, fascin was shown to
modulate the remodeling of mitochondrial actin filaments to promote tumor metastasis [43].
From our previous studies, the migration sensitivity to fascin inhibitors always indicates
a metastasis sensitivity to fascin inhibitors [31,32]. In our previous studies with different
types of cancers, we always observe a correlation of the blocking effect on tumor cell
migration in vitro and the inhibitory effect on tumor metastasis, leading to the increase in
overall survival of tumor-bearing mice. Thus, fascin inhibitors will prevent bladder cancer
spreading and can be used to treat metastatic bladder cancers. In addition, we showed that
NP-G2-044 did not inhibit the growth of bladder cancer cells under 2D culture conditions.
However, NP-G2-044 decreased the volumes of individual colonies from bladder cancer
cells in soft agar colony formation assays under 3D experimental conditions. One possible
explanation is that fascin inhibitor-treated cells are without filopodia, rounded, and smaller
in sizes, compared to untreated cells. Furthermore, NP-G2-044 did not induce apoptosis of
bladder cancers.
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Given that fascin inhibitors do not induce apoptosis of bladder cancer cells, we inves-
tigated the combinatory therapy of NP-G2-044 and a chemotherapeutics agent, cisplatin,
which is widely used for treating metastatic bladder cancers. We have shown that NP-
G2-044 alone and cisplatin alone decreased the primary tumor growth and increased the
overall survival of mice with bladder cancers. Notably, the combination of NP-G2-044
and cisplatin decreased the tumor growth and increased the median overall survival to
an even greater degree. These data strongly demonstrate that NP-G2-044 together with
chemotherapies should help patients with metastatic bladder cancers. These likely reflect
the results of NP-G2-044’s anti-metastasis ability and the cytotoxic outcome of cisplatin.
Moreover, given the recent approval of using immune checkpoint inhibitors, such as
anti-PD-1 antibodies for metastatic bladder cancers, we tested the combinational use of
NP-G2-044 and anti-PD-1 antibody in a syngeneic mouse model of bladder cancers. The
combination treatment of NP-G2-044 + anti-PD-1 antibody led to a greater extension of
median overall survival of tumor-bearing mice than the mice treated with the anti-PD-1
antibody alone. Recently, we have shown that NP-G2-044 could increase intra-tumoral
dendritic cell activation, and thus, anti-cancer immunity [36]. Recently, effective anti-PD-
1 treatment was shown to require intratumoral dendritic cells producing IL-12, which
stimulates antitumor CD8+ T cell immunity [44]. Anti-PD-1 antibody activated CD8+ T
cells release IFN-γ, which can further activate intratumoral dendritic cells. This positive
feedback between intratumoral dendritic cells and T cells is essential for an effective anti-
PD-1 immunotherapy [44]. Currently, only a small portion of bladder cancer patients
derives clinical benefits from checkpoint immunotherapy, the addition of NP-G2-044 to
the checkpoint immunotherapy should advance the care of bladder cancer patients. Our
pre-clinical studies, together with the bladder cancer cells presented here, suggest possible
clinical uses of fascin inhibitors as new bladder cancer treatments in combination with
chemotherapies or checkpoint immunotherapies.

4. Materials and Methods
4.1. Mouse Colony

Female C57BL/6 mice (female 6~8-week-old) were purchased from Charles River
Labs. Studies using mice were performed in compliance with the Institutional Animal
Care and Use Committee of Weill Cornell Medical College of Cornell University (Protocol
#0709-670A). All mice were housed in the facility of the Research Animal Resource Center
of Weill Cornell Medical College of Cornell University.

4.2. Boyden-Chamber Cell Migration Assay

As described previously, bladder cancer cells (1 × 104) suspended in 200 µL starvation
medium were added to the upper chamber of an insert (6.5 mm diameter, 8 µm pore size;
Becton Dickson), and the insert was placed in a 24-well plate containing 400 µL starvation
medium with 10% FBS [31,32]. When used, fascin inhibitors were added to both the upper
and the lower chambers. Migration assays were performed for 48 h and cells were fixed
with 10% paraformaldehyde. Cells were stained with crystal violet, and cells on the upper
side of the insert were removed with a cotton swab. Five different fields on the lower side
of the insert were photographed, and the migrated cells were counted. Migration index
was expressed as relative number of migrated cells in the presence of fascin inhibitors over
in the absence of fascin inhibitors.

4.3. Cell Growth Assay

1 × 105 T24, 253J, MB49, TCCSUP, or J82 cells were seeded in a 6-well plate on day 1.
Control solvent, cisplatin (50 µg/mL), 5-FU (100 µM), or NP-G2-044 (100 µM), was added to
the plates. On days 3, 5, and 7, cells were collected and counted from three separate wells.
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4.4. Soft Agar Colony Formation Assay

1 × 103 T24, 253J, MB49, TCCSUP, and J82 cells were suspended in 0.5 mL of 0.3% low
melting point agar (Merck) in DMEM with 10% FBS and control solvent or the inhibitors
(added as in the cell growth assay above). This suspension was overlaid on pre-solidified
0.6% agar in the same medium in 24-well plates, as previously described [45]. Growth
medium with control solvent or the inhibitors was layered over the agar every 3 days for
14 days. The colonies were stained with 0.1% crystal violet for 1 h at room temperature
and counted under an inverted microscope. The colony volume was calculated according
to V = (4/3) πr3.

4.5. Caspase Activity Assay

Cells (T24, 253J, MB49, TCCSUP, and J82) were treated with NP-G2-044 at differ-
ent concentrations (0, 3, 10, 30, 100 µM). Floating cells and attached cells (collected by
trypsinization) were lysed. Twenty micrograms of cell lysates were then mixed with
caspase-3 (Apopain) substrate Rhodamine 110 (AnaSpec; final concentration 1.5 µM) on ice
in a final volume of 20 µL. Samples were then immediately loaded on 96-well plates and
fluorescence was measured at 30 ◦C for 180 min using TECAN at excitation and emission
485 and 535 nm, respectively. Average relative fluorescence units at 120 min were plotted,
and data are shown as mean ± SEM of at least three independent assays.

4.6. Cell Adhesion Assay

96-well-plates were coated with Laminin-1 (10 µg/mL, 70 µL/well) at 4 ◦C overnight.
The pates were washed with PBS once, blocked with 1% BSA (in DMEM) at 37 ◦C in CO2
incubator for 1 h, and washed with PBS. 5000 cells were added to each well. Different
concentrations of NP-G2-044 were included. After incubating in a CO2 incubator at 37 ◦C
for 1 h, nonadherent cells were washed away with PBS. The plates were fixed with 4%
paraformaldehyde for 30 min at RT. After washing with PBS, the plates were stained with
0.1% Crystal Violet for 30 min at RT and washed with PBS. After the plates were dry, the
number of adherent cells was counted using an inverted microscope.

4.7. Overall Survival Analysis in Mice

For the studies of NP-G2-044 and cisplatin, 6–8-week-old female C57BL/6 mice were ran-
domly divided into four equal groups (control, NP-G2-044, cisplatin, and NP-G2-044 + cisplatin).
MB49 cells were harvested to prepare cell suspensions containing 1 × 106 cells/mL which
were injected into the right flank subcutaneous tissues at 100 µL/mouse. On day eight,
when the maximum diameter of the tumors reached 2 mm, NP-G2-044 (100 mg/kg) was
given by oral gavage daily. On day 11, cisplatin (3 mg/kg, once weekly) was intraperi-
toneally injected. The primary tumor volume was measured using calipers every 3 days
and calculated with the following formula: V (mm3) = (Length × Width2)/2. Mice were
observed daily for mortality.

For the studies with NP-G2-044 and anti-PD-1 antibodies, MB49 cells (1 × 106) sus-
pended in PBS-matrigel (v/v, 1:1) were subcutaneously injected into the right flank of female
C57BL/6 (6–8-week-old) mice on day one. The mice were treated with control solvent,
NP-G2-044, anti-PD-1 antibody, or NP-G2-044 + anti-PD-1 antibody. Starting on day eight,
NP-G2-044 (100 mg/kg) was given once a day by oral gavage. On days 11, 13, 15, and 17,
anti-PD-1 antibody was given by i.p. at 10 mg/kg per mouse. Control solvent was given to
control group according to their body weight. The primary tumor growth and death of
mice were recorded.

4.8. Statistical Analysis

Median overall survival analysis was performed by log-rank test with significance
defined as p < 0.05. For other studies, the statistical significance of differences between
groups was evaluated by the Holm multiple comparisons test (Prism 9, GraphPad). Re-
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sults were considered significant at p < 0.05. Data are representative of at least three
independent experiments.

5. Conclusions

Fascin inhibitors, alone or in combination with chemotherapy or immuno-oncology
therapy, can be used as new treatments for bladder cancer.
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